齐次坐标理解

齐次坐标就是将一个原本是n维的向量用一个n+1维向量来表示,是指一个用于投影几何里的坐标系统,如同用于欧氏几何里的笛卡儿坐标一般。

二维点(x,y)的齐次坐标表示为(hx,hy,h),由此可以看出,一个向量的齐次表示是不唯一的,齐次坐标的h取不同的值都表示的是同一个点,比如齐次坐标(8,4,2)、(4,2,1)表示的都是二维点(4,2)。

给出点的齐次表达式[X Y H],就可求得其二维笛卡尔坐标,即[X Y H]→= [x y 1], 这个过程称为归一化处理。

引进齐次坐标有什么必要,它有什么优点呢?

许多图形应用涉及到几何变换,主要包括平移、旋转、缩放。以矩阵表达式来计算这些变换时,平移是矩阵相加,旋转和缩放则是矩阵相乘,综合起来可以表示为p’ = m1p+ m2(注:因为习惯的原因,实际使用时一般使用变化矩阵左乘向量)(m1旋转缩放矩阵, m2为平移矩阵, p为原向量 ,p’为变换后的向量)。引入齐次坐标的目的主要是合并矩阵运算中的乘法和加法,表示为p’ = pM的形式。即它提供了用矩阵运算把二维、三维甚至高维空间中的一个点集从一个坐标系变换到另一个坐标系的有效方法。

问题:两条平行线可以相交于一点

  • 在欧氏几何空间,同一平面的两条平行线不能相交,这是我们都熟悉的一种场景。
  • 然而,在透视空间里面,两条平行线可以相交,例如:火车轨道随着我们的视线越来越窄,最后两条平行线在无穷远处交于一点。

欧氏空间(或者笛卡尔空间)描述2D/3D几何非常适合,但是这种方法却不适合处理透视空间的问题(实际上,欧氏几何是透视几何的一个子集合),2维笛卡尔坐标可以表示为(x,y)。

如果一个点在无穷远处,这个点的坐标将会(∞,∞),在欧氏空间,这变得没有意义。平行线在透视空间的无穷远处交于一点,但是在欧氏空间却不能,数学家发现了一种方式来解决这个问题。

摘自